Telegram Group & Telegram Channel
Как защитить модели от атак в машинном обучении?

Аугментация данных и робастное обучение — добавление случайных шумов в данные для повышения устойчивости модели.
Adversarial Training — специальное обучение модели на данных с атаками, чтобы она их распознавала.
Дифференциальная приватность — техники, предотвращающие утечку информации о тренировочных данных.
Мониторинг аномалий — выявление подозрительных входных данных и реагирование на них.

Библиотека собеса по Data Science



tg-me.com/ds_interview_lib/868
Create:
Last Update:

Как защитить модели от атак в машинном обучении?

Аугментация данных и робастное обучение — добавление случайных шумов в данные для повышения устойчивости модели.
Adversarial Training — специальное обучение модели на данных с атаками, чтобы она их распознавала.
Дифференциальная приватность — техники, предотвращающие утечку информации о тренировочных данных.
Мониторинг аномалий — выявление подозрительных входных данных и реагирование на них.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/868

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Библиотека собеса по Data Science | вопросы с собеседований from in


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA